Carbon dioxide capture and utilization: using dinuclear catalysts to prepare polycarbonates.
نویسندگان
چکیده
The copolymerization of epoxides, including cyclohexene oxide and vinyl-cyclohexene oxide with carbon dioxide are presented. These processes are catalyzed using a homogeneous di-zinc complex that shows good activity and very high selectivities for polycarbonate polyol formation. The polymerizations are investigated in the presence of different amounts of exogenous reagents, including water, diols and diamines, as models for common contaminants in any carbon dioxide capture and utilization scenario.
منابع مشابه
Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates.
Controlled routes to prepare polyesters and polycarbonates are of interest due to the widespread application of these materials and the opportunities provided to prepare new copolymers. Furthermore, ring-opening copolymerization may enable new poly(ester-carbonate) materials to be prepared which are inaccessible using alternative polymerizations. This review highlights recent advances in the ri...
متن کاملDissymmetric dinuclear transition metal complexes as dual site catalysts for the polymerization of ethylene
A series of dissymmetric dinuclear complexes were synthesized, as dual site catalysts in ethylene polymerization, by coupling the allylated a-diimine complexes of the metals Ti, Zr, V, Ni and Pd with the ansa-zirconocene complex [C5H4-SiH(Me)-C5H4]ZrCl2 possessing a hydride silane moiety. The different stages of syntheses included the formation of bis(cyclopentadienide)methyl silane which was u...
متن کاملDinuclear metal catalysts: improved performance of heterodinuclear mixed catalysts for CO2–epoxide copolymerization†
Some of the most active catalysts for carbon dioxide and epoxide copolymerization are dinuclear metal complexes. Whilst efficient homodinuclear catalysts are known, until now heterodinuclear catalysts remain unreported. Here, a facile, in situ route to a catalyst system comprising amixture of homoand heteronuclear Zn–Mg complexes is presented. This catalyst system shows excellent polymerization...
متن کاملCatalytic Processes for Chemical Conversion of Carbon Dioxide into Cyclic Carbonates and Polycarbonates
Chemical fixation of CO2 has received much attention because CO2 is the most inexpensive and renewable carbon resource from the viewpoint of green chemistry and atom economy. The kinetic and thermodynamic stability of CO2 molecule presents significant challenges in designing efficient chemical transformations based on this potential feedstock. Currently, cyclic carbonates and polycarbonates are...
متن کاملDinuclear metal catalysts: improved performance of heterodinuclear mixed catalysts for CO₂-epoxide copolymerization.
Some of the most active catalysts for carbon dioxide and epoxide copolymerization are dinuclear metal complexes. Whilst efficient homodinuclear catalysts are known, until now heterodinuclear catalysts remain unreported. Here, a facile, in situ route to a catalyst system comprising a mixture of homo- and heteronuclear Zn-Mg complexes is presented. This catalyst system shows excellent polymerizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 183 شماره
صفحات -
تاریخ انتشار 2015